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Frequency-Dependent Bulk Viscosity in One- and
Two-Component Near-Critical Fluids1

A. Onuki2

We assume isomorphism between near-critical fluids and Ising spin systems to
calculate the critical anomaly of transport coefficients. As an example we present
a very simple and general expression for the frequency-dependent bulk viscosity
f * ( y ) in one- and two-component fluids near the critical point. It reads f *((y) =
p(c2 — c2) f(iw/r i)/iW, where f ( z ) is a universal complex function, c is the
zero-frequency sound velocity, cc is its critical value, and re is the order param-
eter relaxation rate. We also examine macroscopic adiabatic relaxations of
pressure, temperature, and density after stepwise changes of pressure or density.
Such measurements give information on the time correlation function of the
diagonal part of the stress, which relaxes anomalously slowly near the critical
point.

1. INTRODUCTION

Isomorphism between critical behavior of fluids and that of Ising spin
systems is a widely used proposition [ 1-3], though resultant critical singu-
larities of various thermodynamic quantities are complicated particularly
for multicomponent fluids. In Ising systems we can use a coarse-grained
Ginzburg-Landau-Wilson free energy functional at the starting point of
renormalization group calculations. Therefore, on the basis of the iso-
morphism assumption, we may develop renormalization group theories
also for fluids. In this paper we point out some general relationships newly
derived from this correspondence. We then apply our scheme to examine
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adiabatic processes, which have not been adequately examined in early
work in critical dynamics [4]. In particular, a strong acoustic anomaly has
long been observed near the critical point of classical fluids [5-9].
However, theories regarding such behavior have not been clear-cut so far,
involving complicated combinations of thermodynamic derivatives [10],
introducing phenomenological parameters [11], or lacking derivations
from first principles [12]. Recently we have presented a renormalization
group theory of critical dynamics putting emphasis on adiabatic processes
for one-component fluids [13] and two-component fluids [14]. This paper
briefly summarizes our results in these papers.

2. ISOMORPHISM BETWEEN FLUIDS AND ISING SYSTEMS

2.1. One-Component Fluids

For one component fluids we take w = p/kBT as the thermodynamic
potential and
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as the independent field variables, where t is the chemical potential per
unit mass. We define them such that they vanish at the critical point by
subtracting the critical values. The Gibbs-Duhem relation may be rewritten
as

so that B and v are conjugate to the internal energy density e and the mass
density p, respectively.

We assume that B and v may be expressed as linear combinations of
h and T in Ising systems with regular coefficients, where h represents a
magnetic field conjugate to the order parameter y and T is the reduced
temperature conjugate to the energy density m. The y fluctuates strongly
and m weakly, being characterized by the critical exponents y and a,
respectively. The free energy functional is of the standard form,



where r0, u0, K0, C0, and y0 are parameters of the model and obey the
well-established renormalization group equations [4, 15].

Generally, deviations of any field variables in fluids are functions of h
and T in the corresponding Ising system. For example, the average pressure
and temperature deviations from the critical values are expressed as
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Note that Eqs. (4) and (5) represent the average fields in equilibrium.
However, the pressure and temperature may be extended to be dynamical
variables fluctuating around the averages given in Eqs. (4) and (5). The
fluctuations superposed on the averages have the following expressions in
the Ginzburg-Landau scheme,

The caret above p and T is introduced to differentiate these fluctuating
variables from the averages in Eqs. (4) and (5). In the long-wavelength
limit or after the renormalization procedure, we may set S f / S ^ = y/h and
df/dm = m/C, where x (~e r / V ) is the susceptibility and C(~£a/v) is the
specific heat of the corresponding spin system. Therefore, we obtain dp =
(dp/dr) m/C and sT= (dT/dr) m/C in the long-wavelength limit, where the
terms proportional to + are neglected because of the large size of x. Using
the famous fluctuation relations for the pressure and the temperature [16],
we find

where k is the wave vector and Cv is the constant-volume specific heat.
These relations have been confirmed also in the formal theory [13] and
may be used to determine the coefficients dp/dr and dT/dr for each fluid.



2.2. Binary Mixtures

Next we consider a binary mixture near the critical line. In this case
the thermodynamic state is characterized by three field variables. Let f be
the coordinate along the critical line. Then any field variables are functions
of h, r, and £. Derivatives along the critical line are written as (da/dh)c =
(da/d£)hr/(db/d£)hr for any thermodynamic variables a and b. We assume
that B and vK = u K / k B T — u K c / k B T c (K= 1, 2) may be expressed as linear
combinations of h, r, and £ with regular coefficients. The free energy func-
tional is

The sound velocity c = (dp/dp)sX is related to the pressure fluctua-
tions as Eq. (8), so in binary mixtures we obtain

where , W { y , m } is given by Eq. (3) and q is a nonsingular fluctuating
variable conjugate to £ with < |qk|

 2> = Q0. The average pressure and tem-
perature deviations are expressed as

The sound velocity cc at the critical point is thus related to Q0 by
kBTcpcc

2
c = (dp/de)2 /Q0 . The second term of Eq. (15) behaves as £-a/v as

The pressure and temperature fluctuations, the counterparts of Eqs. (6) and
(7), read
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in c2 in one-componenet fluids. Similarly, the critical behavior of the
specific heat Cvx at constant volume and composition is expressed as

3. BULK VISCOSITY

The frequency-dependent bulk viscosity may be obtained through
measurement of the sound dispersion and attenuation. For example, the
sound attenuation aA per wavelength is given by a.^ ̂ n(a£*(Q)/pc2 in the
low-frequency limit, w <<TE , where co is the acoustic frequency and c is the
sound velocity. Generally, C*(W) is the frequency-dependent bulk viscosity
defined by the fluctuation-dissipation relation,
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We may examine various crossover effects in binary fluid mixtures
using Eqs. (15) and (16). For example, the derivative (dT/dp)c is nearly
zero in many fluid binary mixtures near the consolute critical point (incom-
pressible limit) [3]. In such cases, Cvx exhibits the weak critical singurality
with the critical exponent a as Eq. (16) shows. We also note that C in
Eqs. (8), (9), (15), and (16) is the specific heat at constant magnetization,
to be precise. It coincides with the specific heat at constant h only for h = 0
(which may be assumed on the critical isochore above Tc in one-compo-
nent fluids). Systematic derivations of the results in this section and more
detailed discussions will appear in a forthcoming paper.

Here, SPij(r, t) is the deviation of the stress tensor variable. If dp x x (r , t) is
replaced by S p x y ( r , t) in Eq. (17), the expression for the frequency-depen-
dent shear viscosity n * ( w ) is obtained. The e*(w) grows strongly near the
critical point and n * ( w ) has only weak critical singularity, so 4 /3n*(w) may
be omitted on the left-hand side of Eq. (17). The relaxation of the order
parameter fluctuation is characterized by the average decay rate rf =
( k B T / 6 p r ) £-3 c £-2 with z = 3, where n is the shear viscosity and £ is the
correlation length growing near the critical point [4],

In one-component fluids near the gas-liquid critical point it is
expressed in terms of a universal complex function f ( z ) from Ref. 13 as



On the critical isochore we have . f ( z ) = R B z for <<l,1RB being a 
universal number, so we obtain the strong anomaly,
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where RB = e/24 + • • • in the e = 4 — d expansion on the critical isochore
above Tc [13]. From data by Roe and Meyer [7] at 1 MHz on 3He we
have also obtained RB = 0.03. However, their data in the low-frequency
regime (w<<Te) were taken in a temperature region where the back-
ground correction to the thermal diffusivity is not negligible [17], so more
experiments are needed at smaller w to determine RB. In the high-
frequency regime w>> Fe we obtain the Ferrell-Bhattacharjee result [12],

where a and v are the usual critical exponents and O/VZ = 0.057.
For the bulk viscosity the dominant nonlinear pressure fluctuation is

given by (dp/dr) y 0 y 2 arising from s f /dm in Eq. (6) or (13). Then it is
straightforward to derive an expression for the universal function f using
the e = 4 — d expansion

Here CA is the spin specific heat with the renormalization contribution
from fluctuations with wave numbers larger than the cutoff A, so
C = l imA_> 0 CA, while FA is the decay rate at the wave number A.

In binary fluid mixtures the frequency-dependent bulk viscosity is
given by a remarkably simple form,

where 3F(z) is common to that in the one-component case. Ferrell and
Bhattacharjee [12] obtained a similar result at high frequencies, where
pc2 — pccc in Eq. (22) is replaced by pc (gc c ) 2 /TC p X , where CpX is the
specific heat at constant p and X. It remains unclear, however, whether or
not their expression g = pT(ds/dp)c for the coefficient g is consistent with
Eq. (22). Our result in Eq. (22) can be used even in the dilute case (where
X<< 1 and cc c X) and in the nearly azeotropic case [1] (where CpX

grows strongly), while their result is not valid in these cases. Very recently
Folk and Moser [18] have derived an expression equivalent to Eq. (22) in
the scheme of renormalization group theory.
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4. MACROSCOPIC ADIABATIC PROCESSES

Let us then examine adiabatic processes in binary fluid mixtures where
the averages of the entropy and the concentration variables are unchanged.
The nonequilibrium averages of the fluctuations of the density, pressure,
and temperature are written as Sp = < S p > , Sp = < d p > , and ST = <d Y>. We
may assume that they depend on time as exp(iwt) without loss of
generality. At p = pc the adiabatic pressure-density relation reads

The adiabatic temperature deviation is given by

where

Use has been made of Eqs. ( 1 3 ) and (14) . Experimentally the difference
AC-BC may be estimated from the relation, ( c 2 - c 2 c ) Cp X= (T/p2)/
(AC — BC)2, valid near the critical line, for example.

We propose two experiments on near-critical binary mixtures other
than acoustic measurements. See Ref. 13 for such experiments in one-com-
ponent fluids. First, let us change the average density at t = 0 by a small
amount p1 in a stepwise manner. Then the pressure change is

where Gxx(t) is the time correlation function of the zero-wave number com-
ponent of pxx divided by kBT or its Laplace transform is L * ( w ) from
Eq. (17) . Then

is a universal function of Fft common to one- and two-component fluids.
As shown in Fig. 1,

for .x<< 1 and
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Fig. 1. The dimensionless stress correlation function G ( T e t ) =
Gx x(t)/p(c2 —c2

c
)X which is a universal function of ret.

for x > > 1 . However, for one-component fluids [19], another adiabatic
effect, called the piston effect, due to the presence of isothermal boundaries
gives rise to a larger pressure change and the above expression, Eq. (27),
cannot be used. Thus, we propose this experiment for a near-critical binary
mixture.

Second, we change the average pressure at t = 0 by a small amount p,
in a stepwise manner. Then, we expect slow relaxation of the density as

so K ( t ) has also a long tail decaying as t-3/2.

where the Laplace transform of the relaxation function K ( t ) is written as

The temperature also relaxes in the same manner due to the second term
in Eq. (24). For Fet<< 1, K(t) quickly grows close to 1 as

For re t>> 1 we have



5. SUMMARY

We have presented a first systematic theory of the critical bulk
viscosity with very simple and general expressions on the basis of the
isomorphism between fluids and Ising systems. We also point out that
adiabatic temperature and pressure changes in the course of phase separa-
tion are closely related effects, which have begun to be investigated very
recently [20, 21].

NOTE ADDED IN PROOF

We can also calculate the transient behavior of the light scattering
amplitude from a near-critical binary mixture after an adiabatic pressure
change. Such an experiment was already performed in Ref. 22.
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